Module 7

Inheritance

CRITICAL SKILLS

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11

Understand inheritance basics

Call superclass constructors

Use super fo access superclass members

Create a multilevel class hierarchy

Know when constructors are called

Understand superclass references to subclass objects
Override methods

Use overridden methods to achieve dynamic method dispatch
Use abstract classes

Use final

Know the Obiject class

Copyright © 2005 The McGraw-Hill Companies. Click here for terms of use.

251

252 Module 7: Inheritance

CRITICAL SKILL

nheritance is one of the three foundation principles of object-oriented programming because it
allows the creation of hierarchical classifications. Using inheritance, you can create a general

class that defines traits common to a set of related items. This class can then be inherited by
other, more specific classes, each adding those things that are unique to it.

In the language of Java, a class that is inherited is called a superclass. The class that
does the inheriting is called a subclass. Therefore, a subclass is a specialized version of a
superclass. It inherits all of the variables and methods defined by the superclass and adds its
own, unique elements.

Inheritance Basics

Java supports inheritance by allowing one class to incorporate another class into its
declaration. This is done by using the extends keyword. Thus, the subclass adds to (extends)
the superclass.

Let’s begin with a short example that illustrates several of the key features of inheritance.
The following program creates a superclass called TwoDShape, which stores the width and
height of a two-dimensional object, and a subclass called Triangle. Notice how the keyword
extends is used to create a subclass.

// A simple class hierarchy.

// A class for two-dimensional objects.
class TwoDShape ({

double width;

double height;

void showDim () {
System.out.println("width and height are " +
width + " and " + height);

}

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
String style; T

Triangle inherits TwoDShape.
double area() {

return width * height / 2; «——— Triangle can refer to the members of TwoDShape
} as if they were part of Triangle.

void showStyle() {
System.out.println("Triangle is " + style);

Java: A Beginner's Guide 253

class Shapes {
public static void main(String args[]) {
Triangle tl = new Triangle();
Triangle t2 = new Triangle();

Inheritance N

tl.width = 4.0;
tl.height = 4.0;
tl.style = "isosceles";

«——— All members of Triangle are available to Triangle objects,
even those inherited from TwoDShape.

t2.width = 8.0;
t2.height = 12.0;
t2.style = "right";

System.out.println("Info for tl: ");
tl.showStyle() ;

tl.showDim() ;

System.out.println("Area is " + tl.area());

System.out.println() ;

System.out.println("Info for t2: ");
t2.showStyle() ;

t2.showDim() ;

System.out.println("Area is " + t2.area());

The output from this program is shown here:

Info for tl:

Triangle is isosceles

Width and height are 4.0 and 4.0
Area is 8.0

Info for t2:

Triangle is right

Width and height are 8.0 and 12.0
Area is 48.0

Here, TwoDShape defines the attributes of a “generic” two-dimensional shape, such as a
square, rectangle, triangle, and so on. The Triangle class creates a specific type of TwoDShape,
in this case, a triangle. The Triangle class includes all of TwoDODbject and adds the field style,

254 Module 7: Inheritance

the method area(), and the method showStyle(). A description of the type of triangle is stored
in style, area() computes and returns the area of the triangle, and showStyle() displays the
triangle style.

Because Triangle includes all of the members of its superclass, TwoDShape, it can
access width and height inside area(). Also, inside main(), objects t1 and t2 can refer to
width and height directly, as if they were part of Triangle. Figure 7-1 depicts conceptually
how TwoDShape is incorporated into Triangle.

Even though TwoDShape is a superclass for Triangle, it is also a completely independent,
stand-alone class. Being a superclass for a subclass does not mean that the superclass cannot
be used by itself. For example, the following is perfectly valid.

TwoDShape shape = new TwoDShape () ;

shape.width = 10;
shape.height = 20;

shape.showDim() ;

Of course, an object of TwoDShape has no knowledge of or access to any subclasses
of TwoDShape.
The general form of a class declaration that inherits a superclass is shown here:

class subclass-name extends superclass-name {
// body of class

}

You can specify only one superclass for any subclass that you create. Java does not support the
inheritance of multiple superclasses into a single subclass. (This differs from C++, in which
you can inherit multiple base classes. Be aware of this when converting C++ code to Java.)
You can, however, create a hierarchy of inheritance in which a subclass becomes a superclass
of another subclass. Of course, no class can be a superclass of itself.

width h
TwoDShape height
showDim()
style
area()

showStyle() Y,

>Triangle

Figure 7-1 A conceptual depiction of the Triangle class

Java: A Beginner's Guide 255

A major advantage of inheritance is that once you have created a superclass that defines
the attributes common to a set of objects, it can be used to create any number of more specific
subclasses. Each subclass can precisely tailor its own classification. For example, here is
another subclass of TwoDShape that encapsulates rectangles.

Inheritance

// A subclass of TwoDShape for rectangles.
class Rectangle extends TwoDShape {
boolean isSquare() {
if (width == height) return true;
return false;

double area() {
return width * height;

The Rectangle class includes TwoDShape and adds the methods isSquare(), which
determines if the rectangle is square, and area(), which computes the area of a rectangle.

Member Access and Inheritance

As you learned in Module 6, often an instance variable of a class will be declared private to
prevent its unauthorized use or tampering. Inheriting a class does not overrule the private
access restriction. Thus, even though a subclass includes all of the members of its superclass, it
cannot access those members of the superclass that have been declared private. For example,

if, as shown here, width and height are made private in TwoDShape, then Triangle will not
be able to access them.

// Private members are not inherited.
// This example will not compile.

// A class for two-dimensional objects.
class TwoDShape {
private double width; // these are
private double height; // now private

void showDim() {
System.out.println("wWidth and height are " +
width + " and " + height);

256 Module 7: Inheritance

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
String style;

Can't access a private member
l of a superclass.

double area() {
return width * height / 2; // Error! can't access

void showStyle() {
System.out.println("Triangle is " + style);

The Triangle class will not compile because the reference to width and height inside the
area() method causes an access violation. Since width and height are declared private, they
are accessible only by other members of their own class. Subclasses have no access to them.

Remember that a class member that has been declared private will remain private to its
class. It is not accessible by any code outside its class, including subclasses.

At first, you might think that the fact that subclasses do not have access to the private
members of superclasses is a serious restriction that would prevent the use of private members
in many situations. However this is not true. As explained in Module 6, Java programmers
typically use accessor methods to provide access to the private methods of a class. Here is a
rewrite of the TwoDShape and Triangle classes that uses methods to access the private
instance variables width and height.

// Use accessor methods to set and get private members.

// A class for two-dimensional objects.
class TwoDShape {
private double width; // these are
private double height; // now private

// Accessor methods for width and height.

double getWidth() { return width; }

double getHeight() { return height; } <——— Accessor methods for
void setWidth(double w) { width = w; } width and height
void setHeight (double h) { height = h; }

void showDim () {
System.out.println("width and height are " +
width + " and " + height);

Java: A Beginner's Guide 257

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
String style;

Use accessor methods
double area() { ¢ provided by superclass.

return getwWidth() * getHeight() / 2;

Inheritance

void showStyle() {
System.out.println("Triangle is " + style);

class Shapes2 {
public static void main(String args[]) {
Triangle tl = new Triangle();
Triangle t2 = new Triangle();

tl.setWidth(4.0);
tl.setHeight (4.0) ;
tl.style = "isosceles";

t2.setWidth(8.0) ;
t2.setHeight (12.0);
t2.style = "right";

System.out.println("Info for tl: ");
tl.showStyle() ;

tl.showDim() ;

System.out.println("Area is " + tl.area());

System.out.println() ;

System.out.println("Info for t2: ");
t2.showStyle() ;

t2.showDim() ;

System.out.println("Area is " + t2.area());

258 Module 7: Inheritance

Ask the Expert

Q: When should I make an instance variable private?

A: There are no hard and fast rules, but here are two general principles. If an instance
variable is to be used only by methods defined within its class, then it should be made
private. If an instance variable must be within certain bounds, then it should be private
and made available only through accessor methods. This way, you can prevent invalid
values from being assigned.

Progress Check

1. When creating a subclass, what keyword is used to include a superclass?
2. Does a subclass include the members of its superclass?

3. Does a subclass have access to the private members of its superclass?

CRITICAL SKILL

Constructors and Inheritance

In a hierarchy, it is possible for both superclasses and subclasses to have their own constructors.
This raises an important question: what constructor is responsible for building an object of the
subclass—the one in the superclass, the one in the subclass, or both? The answer is this: the
constructor for the superclass constructs the superclass portion of the object, and the constructor
for the subclass constructs the subclass part. This makes sense because the superclass has no
knowledge of or access to any element in a subclass. Thus, their construction must be separate.
The preceding examples have relied upon the default constructors created automatically by
Java, so this was not an issue. However, in practice, most classes will have explicit constructors.
Here you will see how to handle this situation.

1. extends
2. Yes.
3. No.

Java: A Beginner's Guide

When only the subclass defines a constructor, the process is straightforward: simply

construct the subclass object. The superclass portion of the object is constructed automatically
using its default constructor. For example, here is a reworked version of Triangle that defines

a constructor. It also makes style private since it is now set by the constructor.
// Add a constructor to Triangle.

// A class for two-dimensional objects.
class TwoDShape {
private double width; // these are
private double height; // now private

// Accessor methods for width and height.
double getWidth() { return width; }
double getHeight () { return height; }
void setWidth(double w) { width = w; }
void setHeight (double h) { height = h; }

void showDim() {
System.out.println("wWidth and height are " +
width + " and " + height);

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
private String style;

// Constructor

Triangle(String s, double w, double h) {
setWidth (w) ;
setHeight (h);

Initialize TwoDShape
portion of object.

style = s;

double area() {
return getWidth() * getHeight() / 2;

void showStyle() {
System.out.println("Triangle is " + style);

259

Inheritance

260 Module 7: Inheritance

class Shapes3 {
public static void main(String args[]) {
Triangle tl = new Triangle("isosceles", 4.0, 4.0);
Triangle t2 = new Triangle("right", 8.0, 12.0);

System.out.println("Info for tl: ");
tl.showStyle() ;

tl.showDim() ;

System.out.println("Area is " + tl.area());

System.out.println() ;

System.out.println("Info for t2: ");
t2.showStyle() ;

t2.showDim() ;

System.out.println("Area is " + t2.areal());

Here, Triangle’s constructor initializes the members of TwoDClass that it inherits along with
its own style field.

When both the superclass and the subclass define constructors, the process is a bit more
complicated because both the superclass and subclass constructors must be executed. In this
case you must use another of Java’s keywords, super, which has two general forms. The first
calls a superclass constructor. The second is used to access a member of the superclass that has
been hidden by a member of a subclass. Here, we will look at its first use.

Using super to Call Superclass Constructors

A subclass can call a constructor defined by its superclass by use of the following form of super:
super(parameter-list);

Here, parameter-list specifies any parameters needed by the constructor in the superclass.
super() must always be the first statement executed inside a subclass constructor.

To see how super() is used, consider the version of TwoDShape in the following
program. It defines a constructor that initializes width and height.

Java: A Beginner's Guide 261

// Add constructors to TwoDShape.
class TwoDShape {

private double width;

private double height;

// Parameterized constructor.
TwoDShape (double w, double h) {
width = w;
height = h;

Inheritance

// Accessor methods for width and height.
double getWidth() { return width; }
double getHeight () { return height; }
void setWidth(double w) { width = w; }
void setHeight (double h) { height = h; }

void showDim() {
System.out.println("width and height are " +
width + " and " + height);

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
private String style;

Triangle(String s, double w, double h) {
super (w, h); // call superclass constructor

style = s; |
} Use super() to execute the
TwoDShape constructor.

double area() {
return getWidth() * getHeight() / 2;

void showStyle() {
System.out.println("Triangle is " + style);

262 Module 7: Inheritance

class Shapes4d {
public static void main(String args[]) {
Triangle tl = new Triangle("isosceles", 4.0, 4.0);
Triangle t2 = new Triangle("right", 8.0, 12.0);

System.out.println("Info for tl: ");
tl.showStyle() ;

tl.showDim() ;

System.out.println("Area is " + tl.area());

System.out.println() ;

System.out.println("Info for t2: ");
t2.showStyle() ;

t2.showDim() ;

System.out.println("Area is " + t2.areal());

Here, Triangle() calls super() with the parameters w and h. This causes the TwoDShape()
constructor to be called, which initializes width and height using these values. Triangle no
longer initializes these values itself. It need only initialize the value unique to it: style. This
leaves TwoDShape free to construct its subobject in any manner that it so chooses. Furthermore,
TwoDShape can add functionality about which existing subclasses have no knowledge, thus
preventing existing code from breaking.

Any form of constructor defined by the superclass can be called by super(). The
constructor executed will be the one that matches the arguments. For example, here are
expanded versions of both TwoDShape and Triangle that include default constructors and
constructors that take one argument.

// Add more constructors to TwoDShape.
class TwoDShape {

private double width;

private double height;

// A default constructor.
TwoDShape () {
width = height = 0.0;

Java: A Beginner's Guide 263

// Parameterized constructor.

TwoDShape (double w, double h) {
width = w;
height = h;

Inheritance

// Construct object with equal width and height.
TwoDShape (double x) {
width = height = x;

// Accessor methods for width and height.
double getwidth() { return width; }
double getHeight () { return height; }
void setWidth(double w) { width = w; }
void setHeight (double h) { height = h; }

void showDim() {
System.out.println("width and height are " +
width + " and " + height);

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
private String style;

// A default constructor.
Triangle() {
super () ; <«
style = "null";

// Constructor
Triangle (String s, double w, double h) {
super (w, h); // call superclass constructor <¢—

style = s;
} Use super() to call the
various forms of the

// Construct an isosceles triangle. TwoDShape constructor.

Triangle (double x) {
super(x); // call superclass constructor

264 Module 7: Inheritance

style = "isosceles";

double area() {
return getWidth() * getHeight() / 2;

void showStyle() {
System.out.println("Triangle is " + style);

class Shapes5 {
public static void main(String args[]) {
Triangle tl = new Triangle();
Triangle t2 = new Triangle("right", 8.0, 12.
Triangle t3 = new Triangle(4.0);

tl = t2;

System.out.println("Info for tl: ");
tl.showStyle() ;

tl.showDim() ;

System.out.println("Area is " + tl.areal());

System.out.println() ;

System.out.println("Info for t2: ");
t2.showStyle() ;

t2.showDim() ;

System.out.println("Area is " + t2.areal());

System.out.println() ;
System.out.println("Info for t3: ");
t3.showStyle() ;

t3.showDim() ;

System.out.println("Area is " + t3.areal());

System.out.println() ;

Java: A Beginner's Guide 265

Here is the output from this version.

Info for tl:

Triangle is right

Width and height are 8.0 and 12.0
Area is 48.0

Inheritance ~

Info for t2:

Triangle is right

Width and height are 8.0 and 12.0
Area is 48.0

Info for t3:

Triangle is isosceles

Width and height are 4.0 and 4.0
Area is 8.0

Let’s review the key concepts behind super(). When a subclass calls super(), it is calling
the constructor of its immediate superclass. Thus, super() always refers to the superclass
immediately above the calling class. This is true even in a multilevel hierarchy. Also, super()
must always be the first statement executed inside a subclass constructor.

Progress Check

1. How does a subclass execute its superclass’ constructor?
2. Can parameters be passed via super()?

3. Can super() go anywhere within a subclass’ constructor?

1. It calls super().
2. Yes.

3. No, it must be the first statement executed.

266 Module 7: Inheritance

CRITICAL SKILL

Using super to Access Superclass Members

There is a second form of super that acts somewhat like this, except that it always refers to the
superclass of the subclass in which it is used. This usage has the following general form:

super.member

Here, member can be either a method or an instance variable.

This form of super is most applicable to situations in which member names of a subclass
hide members by the same name in the superclass. Consider this simple class hierarchy:

// Using super to overcome name hiding.
class A {
int 1i;

// Create a subclass by extending class A.
class B extends A {
int i; // this i hides the i in A

B(int a, int b) {
super.i = a; // i in A <——— Here, super.i refers

i=Db; // i in B to thei in A.

}

void show() {
System.out.println("i in superclass: " + super.i);
System.out.println("i in subclass: " + 1i);

class UseSuper {
public static void main(String argsl[]) {
B subOb = new B(1l, 2);

subOb. show () ;

This program displays the following:

i in superclass: 1
i in subclass: 2

Although the instance variable i in B hides the i in A, super allows access to the i defined
in the superclass. super can also be used to call methods that are hidden by a subclass.

Java: A Beginner's Guide

Extending the Vehicle Class

To illustrate the power of inheritance, we will extend the Vehicle class

first developed in Module 4. As you should recall, Vehicle encapsulates
information about vehicles, including the number of passengers they can carry, their fuel
capacity, and fuel consumption rate. We can use the Vehicle class as a starting point from
which more specialized classes are developed. For example, one type of vehicle is a truck.

An important attribute of a truck is its cargo capacity. Thus, to create a Truck class, you can
extend Vehicle, adding an instance variable that stores the carrying capacity. Here is a version
of Vehicle that does this. In the process, the instance variables in Vehicle will be made private,
and accessor methods are provided to get and set their values.

TruckDemo. java

Step by Step
1. Create a file called TruckDemo.java and copy the last implementation of Vehicle from
Module 4 into the file.

2. Create the Truck class as shown here.

// Extend Vehicle to create a Truck specialization.
class Truck extends Vehicle ({
private int cargocap; // cargo capacity in pounds

// This is a constructor for Truck.
Truck (int p, int £, int m, int c) {
/* Initialize Vehicle members using
Vehicle's constructor. */
super (p, £, m);

cargocap = C;

// Accessor methods for cargocap.
int getCargo() { return cargocap; }
void putCargo (int c) { cargocap = c; }

}

Here, Truck inherits Vehicle, adding cargocap, getCargo(), and putCargo(). Thus,
Truck includes all of the general vehicle attributes defined by Vehicle. It need add only
those items that are unique to its own class.

(continued)

267

Inheritance ~

Extending the Vehicle Class ﬁ i

268 Module 7: Inheritance

3. Next, make the instance variables of Vehicle private, as shown here.

private int passengers; // number of passengers
private int fuelcap; // fuel capacity in gallons
private int mpg; // fuel consumption in miles per gallon

4. Here is an entire program that demonstrates the Truck class.

// Build a subclass of Vehicle for trucks.
class Vehicle {
private int passengers; // number of passengers
private int fuelcap; // fuel capacity in gallons
private int mpg; // fuel consumption in miles per gallon

// This is a constructor for Vehicle.
Vehicle(int p, int £, int m) {
passengers = Dp;
fuelcap = f;
mpg = mj;

// Return the range.
int range() {
return mpg * fuelcap;

// Compute fuel needed for a given distance.
double fuelneeded(int miles) {
return (double) miles / mpg;

// Access methods for instance variables.

int getPassengers() { return passengers; }
void setPassengers (int p) { passengers = p; }
int getFuelcap() { return fuelcap; }

void setFuelcap(int f) { fuelcap = f£; }

int getMpg() { return mpg; }

void setMpg(int m) { mpg = m; }

// Extend Vehicle to create a Truck specialization.
class Truck extends Vehicle {
private int cargocap; // cargo capacity in pounds

// This is a constructor for Truck.
Truck (int p, int £, int m, int c) {

Java: A Beginner's Guide

/* Initialize Vehicle members using
Vehicle's constructor. */
super (p, £, m);

cargocap = C;

// Accessor methods for cargocap.
int getCargo() { return cargocap; }
void putCargo (int c¢) { cargocap = c; }

class TruckDemo ({
public static void main(String args([]) {

// construct some trucks

Truck semi = new Truck (2, 200, 7, 44000);
Truck pickup = new Truck(3, 28, 15, 2000);
double gallons;

int dist = 252;

gallons = semi.fuelneeded(dist);

System.out.println("Semi can carry " + semi.getCargo() +
" pounds.");

System.out.println("To go " + dist + " miles semi needs " +
gallons + " gallons of fuel.\n");

gallons = pickup.fuelneeded(dist) ;

System.out.println("Pickup can carry " + pickup.getCargo() +
" pounds.");

System.out.println("To go " + dist + " miles pickup needs " +
gallons + " gallons of fuel.");

}
5. The output from this program is shown here:

Semi can carry 44000 pounds.
To go 252 miles semi needs 36.0 gallons of fuel.

Pickup can carry 2000 pounds.
To go 252 miles pickup needs 16.8 gallons of fuel.

(continued)

269

Inheritance

..
X
—_—
o
a
=

Extending the Vehicle Class

270 Module 7: Inheritance

CRITICAL SKILL

Creating a Multilevel Hierarchy

Up to this point, we have been using simple class hierarchies that consist of only a superclass
and a subclass. However, you can build hierarchies that contain as many layers of inheritance
as you like. As mentioned, it is perfectly acceptable to use a subclass as a superclass of another.
For example, given three classes called A, B, and C, C can be a subclass of B, which is a
subclass of A. When this type of situation occurs, each subclass inherits all of the traits found
in all of its superclasses. In this case, C inherits all aspects of B and A.

To see how a multilevel hierarchy can be useful, consider the following program. In it,
the subclass Triangle is used as a superclass to create the subclass called ColorTriangle.
ColorTriangle inherits all of the traits of Triangle and TwoDShape and adds a field called
color, which holds the color of the triangle.

6. Many other types of classes can be derived from Vehicle. For example, the following
skeleton creates an off-road class that stores the ground clearance of the vehicle.

// Create an off-road vehicle class

class OffRoad extends Vehicle {
private int groundClearance;

//
}

The key point is that once you have created a superclass that defines the general aspects of
an object, that superclass can be inherited to form specialized classes. Each subclass simply
adds its own, unique attributes. This is the essence of inheritance.

// A multilevel hierarchy.
class TwoDShape {

private double width;
private double height;

// A default constructor.
TwoDShape () {

width = height = 0.0;
}

// Parameterized constructor.
TwoDShape (double w, double h)
width = w;
height = h;
}

// ground clearance in inches

Java: A Beginner's Guide 271

// Construct object with equal width and height.
TwoDShape (double x) {
width = height = x;

// Accessor methods for width and height.
double getWidth() { return width; }
double getHeight () { return height; }
void setWidth(double w) { width = w; }
void setHeight (double h) { height = h; }

Inheritance

void showDim() {
System.out.println("width and height are " +
width + " and " + height);

// Extend TwoDShape.
class Triangle extends TwoDShape {
private String style;

// A default constructor.

Triangle () {
super () ;
style = "null";
}

Triangle(String s, double w, double h) {
super (w, h); // call superclass constructor

style = s;
// Construct an isosceles triangle.
Triangle (double x) {
super (x); // call superclass constructor
style = "isosceles";

double area() {
return getWidth() * getHeight() / 2;

272 Module 7: Inheritance

void showStyle() {
System.out.println("Triangle is " + style);

// Extend Triangle.
class ColorTriangle extends Triangle {
private String color;

ColorTriangle inherits Triangle, which
is descended from TwoDShape, so

ColorTriangle(String c, String s, ColorTriangle includes all members

double w, double h) { of Triangle and TwoDShape.
super (s, w, h);
color = c;
}
String getColor () { return color; }
void showColor () {
System.out.println("Color is " + color);

class Shapes6 {
public static void main(String args[]) {
ColorTriangle tl =

new ColorTriangle("Blue", "right", 8.0, 12.0);
ColorTriangle t2 =
new ColorTriangle("Red", "isosceles", 2.0, 2.0);

System.out.println("Info for tl: ");
tl.showStyle() ;

tl.showDim() ;

tl.showColor () ;

System.out.println("Area is " + tl.area());

System.out.println() ;

System.out.println("Info for t2: ");

t2.showStyle() ;

t2.showDim () ; < A ColorTriangle object can call methods
t2.showColor () ; defined by itself and its superclasses.

System.out.println("Area is " + t2.areal());

CRITICAL SKILL

Java: A Beginner's Guide 273

The output of this program is shown here:

Info for tl:

Triangle is right

Width and height are 8.0 and 12.0
Color is Blue

Area is 48.0

Inheritance

Info for t2:

Triangle is isosceles

Width and height are 2.0 and 2.0
Color is Red

Area is 2.0

Because of inheritance, ColorTriangle can make use of the previously defined classes of
Triangle and TwoDShape, adding only the extra information it needs for its own, specific
application. This is part of the value of inheritance; it allows the reuse of code.

This example illustrates one other important point: super() always refers to the constructor
in the closest superclass. The super() in ColorTriangle calls the constructor in Triangle. The
super() in Triangle calls the constructor in TwoDShape. In a class hierarchy, if a superclass
constructor requires parameters, then all subclasses must pass those parameters “up the line.”
This is true whether or not a subclass needs parameters of its own.

When Are Constructors Called?

In the foregoing discussion of inheritance and class hierarchies, an important question may
have occurred to you: When a subclass object is created, whose constructor is executed first,
the one in the subclass or the one defined by the superclass? For example, given a subclass
called B and a superclass called A, is A’s constructor called before B’s, or vice versa? The
answer is that in a class hierarchy, constructors are called in order of derivation, from superclass
to subclass. Further, since super() must be the first statement executed in a subclass’ constructor,
this order is the same whether or not super() is used. If super() is not used, then the default
(parameterless) constructor of each superclass will be executed. The following program
illustrates when constructors are executed:

// Demonstrate when constructors are called.

// Create a super class.
class A {
A() |
System.out.println("Constructing A.");

274 Module 7: Inheritance

CRITICAL SKILL

// Create a subclass by extending class A.
class B extends A {
B() {

System.out.println("Constructing B.");

// Create another subclass by extending B.
class C extends B {
c() {
System.out.println("Constructing C.");

class OrderOfConstruction {
public static void main(String argsl[]) {
C ¢ = new C();

The output from this program is shown here:

Constructing A.
Constructing B.
Constructing C.

As you can see, the constructors are called in order of derivation.

If you think about it, it makes sense that constructors are executed in order of derivation.
Because a superclass has no knowledge of any subclass, any initialization it needs to perform
is separate from and possibly prerequisite to any initialization performed by the subclass.
Therefore, it must be executed first.

Superclass References and

Subclass Objects

As you know, Java is a strongly typed language. Aside from the standard conversions and
automatic promotions that apply to its primitive types, type compatibility is strictly enforced.
Therefore, a reference variable for one class type cannot normally refer to an object of another
class type. For example, consider the following program.

// This will not compile.
class X {
int a;

Java: A Beginner's Guide 275

X(int 1) { a = 1i; }

class Y {
int a;

Inheritance N

Y(int i) { a

1]
-
-

class IncompatibleRef {
public static void main(String args[]) {
X x = new X(10);
X x2;
Y vy = new Y(5);

x2 = x; // OK, both of same type

x2 = vy; // Error, not of same type

Here, even though class X and class Y are physically the same, it is not possible to assign an
X reference to a Y object because they have different types. In general, an object reference
variable can refer only to objects of its type.

There is, however, an important exception to Java’s strict type enforcement. A reference
variable of a superclass can be assigned a reference to any subclass derived from that
superclass. Here is an example:

// A superclass reference can refer to a subclass object.
class X {
int a;

X(int i) { a = i; }
class Y extends X {

int b;

Y (int i, int 3j) {

super (J) ;
b =1;

276 Module 7: Inheritance

class SupSubRef {
public static void main(String argsl[]) {
X x = new X(10);
X x2;
Y v = new Y(5, 6);

x2 = X; // OK, both of same type

System.out.println("x2.a: " + x2.a); OK because Y is a subclass of X;
thus x2 can refer to y.

X2 = y; // still Ok because Y is derived from X
System.out.println("x2.a: " + x2.a);

// X references know only about X members
x2.a = 19; // OK
// x2.b = 27; // Error, X doesn't have a b member

}
}

Here, Y is now derived from X; thus it is permissible for x2 to be assigned a reference to
a'Y object.

It is important to understand that it is the type of the reference variable— not the type of the
object that it refers to—that determines what members can be accessed. That is, when a reference
to a subclass object is assigned to a superclass reference variable, you will have access only to
those parts of the object defined by the superclass. This is why x2 can’t access b even when it
refers to a Y object. If you think about it, this makes sense, because the superclass has no
knowledge of what a subclass adds to it. This is why the last line of code in the program is
commented out.

Although the preceding discussion may seem a bit esoteric, it has some important practical
applications. One is described here. The other is discussed later in this module, when method
overriding is covered.

An important place where subclass references are assigned to superclass variables is when
constructors are called in a class hierarchy. As you know, it is common for a class to define
a constructor that takes an object of the class as a parameter. This allows the class to construct a
copy of an object. Subclasses of such a class can take advantage of this feature. For example,
consider the following versions of TwoDShape and Triangle. Both add constructors that take
an object as a parameter.
class TwoDShape {

private double width;
private double height;

Java: A Beginner's Guide 277

// A default constructor.
TwoDShape () {
width = height = 0.0;

// Parameterized constructor.
TwoDShape (double w, double h) {
width = w;
height = h;

Inheritance N

// Construct object with equal width and height.
TwoDShape (double x) {
width = height = x;

// Construct an object from an object.

TwoDShape (TwoDShape ob) {+« Construct object from an object.
width = ob.width;
height = ob.height;

// Accessor methods for width and height.
double getwidth() { return width; }
double getHeight () { return height; }
void setWidth(double w) { width = w; }
void setHeight (double h) { height = h; }

void showDim() {
System.out.println("width and height are " +
width + " and " + height);

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
private String style;

// A default constructor.
Triangle() {

super () ;

style = "null";

278 Module 7: Inheritance

// Constructor for Triangle.
Triangle (String s, double w, double h) {
super (w, h); // call superclass constructor

style = s;
// Construct an isosceles triangle.
Triangle (double x) {
super (x); // call superclass constructor
style = "isosceles";

// Construct an object from an object.
Triangle (Triangle ob) {

super (ob); // pass object to TwoDShape constructor
style = ob.style; X
} Pass a Triangle reference to
TwoDShape’s constructor.

double area() {
return getWidth() * getHeight() / 2;

void showStyle() {
System.out.println("Triangle is " + style);

class Shapes7 {
public static void main(String args[]) {
Triangle tl =
new Triangle("right", 8.0, 12.0);

// make a copy of tl
Triangle t2 = new Triangle(tl);

System.out.println("Info for tl: ");
tl.showStyle() ;

tl.showDim() ;

System.out.println("Area is " + tl.area());

System.out.println() ;

Java: A Beginner's Guide 279

System.out.println("Info for t2: ");
t2.showStyle() ;

t2.showDim() ;

System.out.println("Area is " + t2.areal());

Inheritance

In this program, t2 is constructed from t1 and is, thus, identical. The output is shown here.

Info for til:

Triangle is right

Width and height are 8.0 and 12.0
Area is 48.0

Info for t2:

Triangle is right

Width and height are 8.0 and 12.0
Area is 48.0

Pay special attention to this Triangle constructor:

// Construct an object from an object.
Triangle(Triangle ob) {
super (ob); // pass object to TwoDShape constructor
style = ob.style;

It receives an object of type Triangle and it passes that object (through super) to this
TwoDShape constructor:

// Construct an object from an object.
TwoDShape (TwoDShape ob) {

width = ob.width;

height = ob.height;

The key point is that TwoDshape() is expecting a TwoDShape object. However,
Triangle() passes it a Triangle object. The reason this works is because, as explained, a
superclass reference can refer to a subclass object. Thus it is perfectly acceptable to pass
TwoDShape() a reference to an object of a class derived from TwoDShape. Because
the TwoDShape() constructor is initializing only those portions of the subclass object that
are members of TwoDShape, it doesn’t matter that the object might also contain other
members added by derived classes.

280 Module 7: Inheritance

Progress Check

1. Can a subclass be used as a superclass for another subclass?

2. In a class hierarchy, in what order are the constructors called?

3. Given that Jet extends Airplane, can an Airplane reference refer to a Jet object?

CRITICAL SKILL

Method Overriding

In a class hierarchy, when a method in a subclass has the same return type and signature as a
method in its superclass, then the method in the subclass is said to override the method in the
superclass. When an overridden method is called from within a subclass, it will always refer to
the version of that method defined by the subclass. The version of the method defined by the

superclass will be hidden. Consider the following:

// Method overriding.
class A {
int i, 7;
A(int a, int b) {
i = a;
j = b;

// display i and j
void show() {
System.out.println("i and j: " + 1 + " " + J);

class B extends A {
int k;

B(int a, int b, int c) {
super (a, b);
k = ¢;

1. Yes.
2. Constructors are called in order of derivation.

3. Yes. In all cases, a superclass reference can refer to a subclass object, but not vice versa.

Java: A Beginner's Guide

// display k - this overrides show() in A
{ < This show() in B overrides
the one defined by A.

void show()
System.out.println("k: " + k);

class Override {
public static void main(String argsl[]) {
B subOb = new B(1, 2, 3);

subOb.show(); // this calls show() in B

The output produced by this program is shown here:
k: 3

When show() is invoked on an object of type B, the version of show() defined within B
is used. That is, the version of show() inside B overrides the version declared in A.

If you want to access the superclass version of an overridden method, you can do so by
using super. For example, in this version of B, the superclass version of show() is invoked
within the subclass’ version. This aliows all instance variables to be displayed.

class B extends A {
int k;

B(int a, int b, int c) {

super (a, b);
k = c; Use super to call the version of

} show() defined by superclass A.
void show() {

super.show(); // this calls A's show()
System.out.println("k: " + k);

If you substitute this version of show() into the previous program, you will see the

following output:

iand j: 1 2
k: 3

Here, super.show() calls the superclass version of show().

281

Inheritance

282 Module 7: Inheritance

Method overriding occurs only when the return types and signatures of the two methods
are identical. If they are not, then the two methods are simply overloaded. For example,
consider this modified version of the preceding example:

/* Methods with differing signatures are
overloaded and not overridden. */
class A {
int i, 3J;

A(int a, int b) {
i = a;
j = b;

// display i and j
void show() {
System.out.println("i and j: " + i + " " + J);

// Create a subclass by extending class A.
class B extends A {
int k;

B(int a, int b, int c¢) {
super (a, b);
k = c; } Because signatures differ, this
show() simply overloads show()
/) overload show () in superclass A.
void show(String msg) { <+

System.out.println(msg + k) ;

class Overload {
public static void main(String argsl[]) {
B subOb = new B(1, 2, 3);

subOb.show("This is k: "); // this calls show() in B
subOb.show(); // this calls show() in A

Java: A Beginner's Guide

The output produced by this program is shown here:

This is k: 3
iand j: 1 2

The version of show() in B takes a string parameter. This makes its signature different
from the one in A, which takes no parameters. Therefore, no overriding (or name hiding)
takes place.

CRITICAL SKILL

Overridden Methods Support
Polymorphism

While the examples in the preceding section demonstrate the mechanics of method overriding,
they do not show its power. Indeed, if there were nothing more to method overriding than a name
space convention, then it would be, at best, an interesting curiosity but of little real value. However,
this is not the case. Method overriding forms the basis for one of Java’s most powerful concepts:
dynamic method dispatch. Dynamic method dispatch is the mechanism by which a call to an
overridden method is resolved at run time rather than compile time. Dynamic method dispatch
is important because this is how Java implements run-time polymorphism.

Let’s begin by restating an important principle: a superclass reference variable can refer to
a subclass object. Java uses this fact to resolve calls to overridden methods at run time. Here’s
how. When an overridden method is called through a superclass reference, Java determines
which version of that method to execute based upon the type of the object being referred to at the
time the call occurs. Thus, this determination is made at run time. When different types of objects
are referred to, different versions of an overridden method will be called. In other words, it is the
type of the object being referred to (not the type of the reference variable) that determines which
version of an overridden method will be executed. Therefore, if a superclass contains a method
that is overridden by a subclass, then when different types of objects are referred to through a
superclass reference variable, different versions of the method are executed.

Here is an example that illustrates dynamic method dispatch:

// Demonstrate dynamic method dispatch.

class Sup {
void who () {
System.out.println("who() in Sup");
}

283

Inheritance N

284 Module 7: Inheritance

class Subl extends Sup {
void who() {
System.out.println("who() in Subl");

class Sub2 extends Sup {
void who() {
System.out.println("who() in Sub2");

}

class DynDispDemo {
public static void main(String args[]) {
Sup superOb = new Sup() ;
Subl subObl = new Subl();
Sub2 subOb2 = new Sub2();

Sup supRef;

supRef = superOb;

supRef .who () ; <—— In each case,
the version of
supRef = subObl; yvho() to.co||
£ wh is determined
. — .
supRef.who () ; at run time by
the type of
supRef = sub0b2; object being
supRef .who () ; <+—— referred to.

The output from the program is shown here:

who () in Sup
who () in Subl
who () in Sub?2

This program creates a superclass called Sup and two subclasses of it, called Sub1 and
Sub2. Sup declares a method called who(), and the subclasses override it. Inside the main()
method, objects of type Sup, Sub1, and Sub2 are declared. Also, a reference of type Sup,
called supRef, is declared. The program then assigns a reference to each type of object to
supRef and uses that reference to call who(). As the output shows, the version of who()
executed is determined by the type of object being referred to at the time of the call, not by
the class type of supRef.

Java: A Beginner's Guide 285

Ask the Expert

Q: Overridden methods in Java look a lot like virtual functions in C++. Is there
a similarity?

Inheritance ™~

A: Yes. Readers familiar with C++ will recognize that overridden methods in Java are
equivalent in purpose and similar in operation to virtual functions in C++.

Why Overridden Methods?

As stated earlier, overridden methods allow Java to support run-time polymorphism.
Polymorphism is essential to object-oriented programming for one reason: it allows a
general class to specify methods that will be common to all of its derivatives, while
allowing subclasses to define the specific implementation of some or all of those methods.
Overridden methods are another way that Java implements the “one interface, multiple
methods” aspect of polymorphism.

Part of the key to successfully applying polymorphism is understanding that the
superclasses and subclasses form a hierarchy that moves from lesser to greater specialization.
Used correctly, the superclass provides all elements that a subclass can use directly. It also
defines those methods that the derived class must implement on its own. This allows the
subclass the flexibility to define its own methods, yet still enforces a consistent interface.
Thus, by combining inheritance with overridden methods, a superclass can define the general
form of the methods that will be used by all of its subclasses.

Applying Method Overriding to TwoDShape

To better understand the power of method overriding, we will apply it to the TwoDShape
class. In the preceding examples, each class derived from TwoDShape defines a method
called area(). This suggests that it might be better to make area() part of the TwoDShape
class, allowing each subclass to override it, defining how the area is calculated for the type of
shape that the class encapsulates. The following program does this. For convenience, it also
adds a name field to TwoDShape. (This makes it easier to write demonstration programs.)

// Use dynamic method dispatch.
class TwoDShape {
private double width;
private double height;
private String name;

286 Module 7: Inheritance

// A default constructor.
TwoDShape () {
width = height = 0.0;
name = "null";

// Parameterized constructor.

TwoDShape (double w, double h, String n) {
width = w;
height = h;
name = n;

// Construct object with equal width and height.
TwoDShape (double x, String n) {

width = height = x;

name = n;

// Construct an object from an object.
TwoDShape (TwoDShape ob) {

width = ob.width;

height = ob.height;

name = ob.name;

// Accessor methods for width and height.
double getWidth() { return width; }
double getHeight () { return height; }
void setWidth(double w) { width = w; }
void setHeight (double h) { height = h; }

String getName () { return name; }

void showDim() {
System.out.println("wWidth and height are " +
width + " and " + height);

The area() method defined by TwoDShape.

double area() {
System.out.println("area() must be overridden") ;
return 0.0;

Java: A Beginner's Guide 287

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
private String style;

// A default constructor.
Triangle() {

super () ;

style = "null";

Inheritance N

// Constructor for Triangle.
Triangle(String s, double w, double h) {
super (w, h, "triangle");

style = s;

// Construct an isosceles triangle.
Triangle (double x) {
super (x, "triangle"); // call superclass constructor

style = "isosceles";

// Construct an object from an object.

Triangle (Triangle ob) {
super (ob); // pass object to TwoDShape constructor
style = ob.style;

}
// Override area() for Triangle.
double area() {+ Override area() for Triangle.

return getWidth() * getHeight() / 2;

void showStyle() {
System.out.println("Triangle is " + style);

// A subclass of TwoDShape for rectangles.
class Rectangle extends TwoDShape {
// A default constructor.
Rectangle() {
super () ;

288 Module 7: Inheritance

// Constructor for Rectangle.
Rectangle (double w, double h) {
super (w, h, "rectangle"); // call superclass constructor

// Construct a square.
Rectangle (double x) {
super (x, "rectangle"); // call superclass constructor

// Construct an object from an object.
Rectangle (Rectangle ob) {
super (ob); // pass object to TwoDShape constructor

}

boolean isSquare() {
if (getWidth() == getHeight()) return true;
return false;

}

// Override area() for Rectangle.
double area() { Override area() for Rectangle.
return getWidth() * getHeight();

}
class DynShapes {
public static void main(String args[]) {

TwoDShape shapes|[] = new TwoDShape[5];
shapes|[0] = new Triangle("right", 8.0, 12.0);
shapes[1l] = new Rectangle(10);
shapes([2] = new Rectangle (10, 4);
shapes[3] = new Triangle(7.0);
shapes[4] = new TwoDShape (10, 20, "generic"); The proper version of areal()

is called for each shape.

for(int i=0; 1 < shapes.length; i++) {
System.out.println("object is " + shapes[i].getName()) ;
System.out.println("Area is " + shapes[i].area());

Java: A Beginner's Guide 289

System.out.println() ;

v
Inheritance N

The output from the program is shown here:

object is triangle
Area is 48.0

object is rectangle
Area is 100.0

object is rectangle
Area is 40.0

object is triangle
Area is 24.5

object is generic
area() must be overridden
Area is 0.0

Let’s examine this program closely. First, as explained, area() is now part of the
TwoDShape class and is overridden by Triangle and Rectangle. Inside TwoDShape, area()
is given a placeholder implementation that simply informs the user that this method must be
overridden by a subclass. Each override of area() supplies an implementation that is suitable
for the type of object encapsulated by the subclass. Thus, if you were to implement an ellipse
class, for example, then area() would need to compute the area() of an ellipse.

There is one other important feature in the preceding program. Notice in main() that
shapes is declared as an array of TwoDShape objects. However, the elements of this array are
assigned Triangle, Rectangle, and TwoDShape references. This is valid because, as explained,
a superclass reference can refer to a subclass object. The program then cycles through the array,
displaying information about each object. Although quite simple, this illustrates the power of
both inheritance and method overriding. The type of object referred to by a superclass reference
variable is determined at run time and acted on accordingly. If an object is derived from
TwoDShape, then its area can be obtained by calling area(). The interface to this operation
is the same no matter what type of shape is being used.

290 Module 7: Inheritance

Progress Check

CRITICAL SKILL

1. What is method overriding?
2. Why is method overriding important?

3. When an overridden method is called through a superclass reference, which version of the
method is executed?

Using Abstract Classes

Sometimes you will want to create a superclass that defines only a generalized form that will
be shared by all of its subclasses, leaving it to each subclass to fill in the details. Such a class
determines the nature of the methods that the subclasses must implement but does not, itself,
provide an implementation of one or more of these methods. One way this situation can occur
is when a superclass is unable to create a meaningful implementation for a method. This is the
case with the version of TwoDShape used in the preceding example. The definition of area()
is simply a placeholder. It will not compute and display the area of any type of object.

As you will see as you create your own class libraries, it is not uncommon for a method to
have no meaningful definition in the context of its superclass. You can handle this situation
two ways. One way, as shown in the previous example, is to simply have it report a warning
message. While this approach can be useful in certain situations—such as debugging—it is not
usually appropriate. You may have methods which must be overridden by the subclass in order
for the subclass to have any meaning. Consider the class Triangle. It has no meaning if area()
is not defined. In this case, you want some way to ensure that a subclass does, indeed, override
all necessary methods. Java’s solution to this problem is the abstract method.

An abstract method is created by specifying the abstract type modifier. An abstract
method contains no body and is, therefore, not implemented by the superclass. Thus, a
subclass must override it—it cannot simply use the version defined in the superclass. To
declare an abstract method, use this general form:

abstract type name(parameter-list);

As you can see, no method body is present. The abstract modifier can be used only on normal
methods. It cannot be applied to static methods or to constructors.

1. Method overriding occurs when a subclass defines a method that has the same signature as a method in its superclass.

2. Overridden methods allow Java to support run-time polymorphism.

3. The version of an overridden method that is executed is determined by the type of the object being referred to at the time
of the call. Thus, this determination is made at run time.

Java: A Beginner's Guide

A class that contains one or more abstract methods must also be declared as abstract by
preceding its class declaration with the abstract specifier. Since an abstract class does not define
a complete implementation, there can be no objects of an abstract class. Thus, attempting to
create an object of an abstract class by using new will result in a compile-time error.

When a subclass inherits an abstract class, it must implement all of the abstract methods
in the superclass. If it doesn’t, then the subclass must also be specified as abstract. Thus, the
abstract attribute is inherited until such time as a complete implementation is achieved.

Using an abstract class, you can improve the TwoDShape class. Since there is no
meaningful concept of area for an undefined two-dimensional figure, the following
version of the preceding program declares area() as abstract inside TwoDShape, and
TwoDShape as abstract. This, of course, means that all classes derived from TwoDShape
must override area().

// Create an abstract class.

abstract class TwoDShape { «————TwoDShape is now abstract.
private double width;
private double height;
private String name;

// A default constructor.
TwoDShape () {
width = height = 0.0;
name = "null";

// Parameterized constructor.

TwoDShape (double w, double h, String n) ({
width = w;
height = h;
name = n;

// Construct object with equal width and height.
TwoDShape (double x, String n) {

width = height = x;

name = n;

// Construct an object from an object.
TwoDShape (TwoDShape ob) {

width = ob.width;

height = ob.height;

name = ob.name;

291

Inheritance

292 Module 7: Inheritance

// Accessor methods for width and height.
double getWidth() { return width; }
double getHeight () { return height; }
void setWidth (double w) { width = w; }
void setHeight (double h) { height = h; }

String getName () { return name; }

void showDim() {
System.out.println("width and height are " +
width + " and " + height);

// Now, area() is abstract.
abstract double area(); «————— Make areq() info an
} abstract method.

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {

private String style;

// A default constructor.

Triangle () {
super () ;
style = "null";
}

// Constructor for Triangle.
Triangle(String s, double w, double h) {
super (w, h, "triangle");

style = s;

// Construct an isosceles triangle.
Triangle (double x) {
super (x, "triangle"); // call superclass constructor

style = "isosceles";

// Construct an object from an object.

Triangle (Triangle ob) {
super (ob); // pass object to TwoDShape constructor
style = ob.style;

Java: A Beginner's Guide

double area() {
return getWidth() * getHeight() / 2;

void showStyle() {
System.out.println("Triangle is " + style);

// A subclass of TwoDShape for rectangles.
class Rectangle extends TwoDShape ({
// A default constructor.
Rectangle() {
super () ;

// Constructor for Rectangle.
Rectangle (double w, double h) {
super (w, h, "rectangle"); // call superclass constructor

// Construct a square.
Rectangle (double x) {
super (x, "rectangle"); // call superclass constructor

// Construct an object from an object.
Rectangle (Rectangle ob) {
super (ob); // pass object to TwoDShape constructor

boolean isSquare() {
if (getWidth() == getHeight()) return true;
return false;

double area() {
return getWidth() * getHeight();

class AbsShape {
public static void main(String argsl[]) {
TwoDShape shapes[] = new TwoDShape[4];

293

Inheritance

294 Module 7: Inheritance

shapes[0] =
shapes[1l] =
shapes[2] =
shapes[3] =

for (int 1=0;

new Triangle("right", 8.0, 12.0);
new Rectangle(10);

new Rectangle (10, 4);

new Triangle(7.0);

i < shapes.length; i++) {

System.out.println("object is " +

shapes[i].getName ()) ;

System.out.println("Area is " + shapes[i].areal());

System.out.println() ;

As the program illustrates, all subclasses of TwoDShape must override area().

To prove this to yourself, try creating a subclass that does not override area(). You will

receive a compile-time error. Of course, it is still possible to create an object reference of type
TwoDShape, which the program does. However, it is no longer possible to declare objects of
type TwoDShape. Because of this, in main() the shapes array has been shortened to 4, and a

generic TwoDShape

object is no longer created.

One last point: notice that TwoDShape still includes the showDim() and getName()
methods and that these are not modified by abstract. It is perfectly acceptable—indeed, quite
common—for an abstract class to contain concrete methods which a subclass is free to use as
is. Only those methods declared as abstract need be overridden by subclasses.

Progress Check

1. What is an abstract method? How is one created?

2. What is an abstract class?

3. Can an object of an abstract class be instantiated?

1. An abstract method is a method without a body. Thus it consists of a return type, name, and parameter list and is preceded

by the keyword abstract.

2. An abstract class contains at least one abstract method.

3. No.

CRITICAL SKILL

Java: A Beginner's Guide 295

Using final

As powerful and useful as method overriding and inheritance are, sometimes you will want to
prevent them. For example, you might have a class that encapsulates control of some hardware
device. Further, this class might offer the user the ability to initialize the device, making use of
private, proprietary information. In this case, you don’t want users of your class to be able to
override the initialization method. Whatever the reason, in Java it is easy to prevent a method
from being overridden or a class from being inherited by using the keyword final.

Inheritance ~

final Prevents Overriding

To prevent a method from being overridden, specify final as a modifier at the start of its
declaration. Methods declared as final cannot be overridden. The following fragment
illustrates final:

class A {
final void meth() {
System.out.println("This is a final method.");
}
}

class B extends A {
void meth() { // ERROR! Can't override.
System.out.println("Illegal!");
}

Because meth() is declared as final, it cannot be overridden in B. If you attempt to do so, a
compile-time error will result.

final Prevents Inheritance

You can prevent a class from being inherited by preceding its declaration with final. Declaring
a class as final implicitly declares all of its methods as final, too. As you might expect, it is
illegal to declare a class as both abstract and final since an abstract class is incomplete by
itself and relies upon its subclasses to provide complete implementations.

Here is an example of a final class:

final class A {
//
}

296

Module 7: Inheritance

// The following class is illegal.
class B extends A { // ERROR! Can't subclass A
/7

As the comments imply, it is illegal for B to inherit A since A is declared as final.

Using final with Data Members

In addition to the uses of final just shown, final can also be applied to variables to create what
amounts to named constants. If you precede a class variable’s name with final, its value cannot
be changed throughout the lifetime of your program. You can, of course, give that variable an
initial value. For example, in Module 6 a simple error-management class called ErrorMsg
was shown. That class mapped a human-readable string to an error code. Here, that original
class is improved by the addition of final constants which stand for the errors. Now, instead

of passing getErrorMsg() a number such as 2, you can pass the named integer constant
DISKERR.

// Return a String object.
class ErrorMsg {
// Error codes.
final int OUTERR
final int INERR
final int DISKERR
final int INDEXERR

’

. 4—— Declare final constants.

’

’

I
w N R o

’

String msgs[] = {
"Output Error",
“Input Error",

"Disk Full",
"Index Out-Of-Bounds"

}i

// Return the error message.
String getErrorMsg(int i) {
if(i >=0 & 1 < msgs.length)
return msgs([i];
else
return "Invalid Error Code";

Java: A Beginner's Guide 297

class FinalD {
public static void main(String argsl[]) {
ErrorMsg err = new ErrorMsg() ; Use final constants.

System.out.println(err.getErrorMsg (err.OUTERR)) ;
System.out.println(err.getErrorMsg (err .DISKERR)) ;

Inheritance

Notice how the final constants are used in main(). Since they are members of the ErrorMsg
class, they must be accessed via an object of that class. Of course, they can also be inherited by
subclasses and accessed directly inside those subclasses.

As a point of style, many Java programmers use uppercase identifiers for final constants,
as does the preceding example. But this is not a hard and fast rule.

Ask the Expert

Q: Can final variables be made static?

A: Yes. Doing so allows you to refer to the constant through its class name rather than
through an object. For example, if the constants in ErrorMsg were modified by static,
then the println() statements in main() could look like this:

System.out.println(err.getErrorMsg (ErrorMsg.OUTERR)) ;
System.out.println(err.getErrorMsg (ErrorMsg.DISKERR)) ;

7

Progress Check

1. How do you prevent a method from being overridden?

2. If a class is declared as final, can it be inherited?

1. Precede its declaration with the keyword final.
2. No.

298

Module 7: Inheritance

CRITICAL SKILL

The Obiject Class

Java defines one special class called Object that is an implicit superclass of all other classes.
In other words, all other classes are subclasses of Object. This means that a reference variable
of type Object can refer to an object of any other class. Also, since arrays are implemented as
classes, a variable of type Object can also refer to any array.

Object defines the following methods, which means that they are available in every object.

Method

Purpose

Object clone()

Creates a new object that is the same as the object being cloned.

boolean equals(Obiject object)

Defermines whether one object is equal fo another.

void finalize()

Called before an unused object is recycled.

Class<? extends Object> getClass()

Obtains the class of an object at run time.

int hashCode()

Returns the hash code associated with the invoking obiject.

void notify()

Resumes execution of a thread waiting on the invoking object.

void noftifyAll()

Resumes execution of all threads waiting on the invoking object.

String toString()

Returns a string that describes the object.

void wait{)

void wait{long milliseconds)

void wait{long milliseconds,
int nanoseconds)

Waits on another thread of execution.

The methods getClass(), notify(), notifyAll(), and wait() are declared as final. You can
override the others. Several of these methods are described later in this book. However, notice
two methods now: equals() and toString(). The equals() method compares the contents of
two objects. It returns true if the objects are equivalent, and false otherwise. The toString()
method returns a string that contains a description of the object on which it is called. Also,
this method is automatically called when an object is output using println(). Many classes
override this method. Doing so allows them to tailor a description specifically for the types

of objects that they create.

One last point: notice the unusual syntax in the return type for getClass(). This is a
generic type. Generic types are a recent (and powerful) addition to Java that enables the
type of data used by a class or method to be specified as a parameter. Generic types are

discussed in Module 13.

